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ABSTRACT:

An object-based approach for forest disaster change detection using High Resolution (HR) satellite images is proposed. An automatic
feature selection process is used to optimize image segmentation via an original calibration-like procedure. A multitemporal classifi-
cation then enables the separation of wind-fall from intact areas based on a new descriptor that depends on the level of fragmentation
of the detected regions. The mean shift algorithm was used in both the segmentation and the classification processes. The method was
tested on a high resolution Formosat-2 multispectral satellite image pair acquired before and after the Klaus storm. The obtained results
are encouraging and the contribution of high resolution images for forest disaster mapping is discussed.

1 INTRODUCTION

In a climate changing context, wind storms have become more
and more frequent. Wind-fall damages have to be quickly mapped
to prevent fire risks, call for financial compensation and to up-
date the national forest inventory. While ground investigations
are complex due to fallen trees, remote-sensing techniques en-
able fast monitoring of large and unreachable areas. Their use
have widely spread through the world for disaster change detec-
tion, especially with the growing spatial and temporal resolutions
of new satellites. The objective of the present study is to pro-
vide a binary mapping discriminating damaged and intact areas
using HR satellite imagery consisting of a pair of multispectral
Formosat-2 images of 8 m resolution. The images were taken
before and after the Klaus Storm that happened the24th January
2009 in the South West of France.
In literature, the former works in forestry produced low scale
maps, near to the hectare and studied essentially the clear-cuts.
Few works have dealt with smaller structural changes such as
wind-fall damages. Recently, object-based classifications were
used for change detection in forestry (Desclee et al., 2006, Conchedda
et al., 2008). These methods are based on a segmentation process
that combines spatial and spectral information to group pixels
into homogeneous regions before their classification using new
object descriptors. The latter can be geometrical and textural
(Fraser et al., 2005) or temporal (Desclee et al., 2006).
Besides, change detection can be either based on a comparison of
before and after storm classifications (post-classification), or di-
rectly processed on multitemporal images (joint-classification).
Post-classification approaches are robust to radiometric differ-
ences between images, and provide an accurate “from-to” change
information (Im and Jensen, 2005) but suffer from errors propa-
gation. Joint-classification approaches provide more information
to classify small changes. They can either rely on machine learn-
ing algorithms using a training set (Im and Jensen, 2005) or use
thresholding which involves a parametric statistical test (Desclee
et al., 2006) or an expert knowledge (Fraser et al., 2005).

In this study, the proposed method is an object-based, multi-
temporal classification that maps storm damages at a fine spatial

scale. We propose a nearly automatic method requiring very lim-
ited data for rapid mapping at a regional scale. An unsupervised
multitemporal classification was preferred to a post-classification
scheme since, in our context, changes are subtle and hard to de-
tect in a single after-storm image. The algorithm is based on the
mean shift segmentation that will be detailed in section 2. An au-
tomatic feature selection process is used to optimize image seg-
mentation via an original calibration-like procedure and will be
presented in section 3. Section 4 presents the binary multitem-
poral classification which is based on the mean shift algorithm
and uses a new descriptor that depends on the level of fragmenta-
tion of the detected regions. Experimental results are shown and
discussed in section 5 and finally conclusions are drawn.

2 MEAN SHIFT SEGMENTATION

The Mean Shift (MS) algorithm is a non-parametric feature-space
analysis technique. (Fukunaga and Hostetler, 1975, Comaniciu
and Meer, 2002) showed excellent results in clustering and object
delineation in color images. It is based on a density mode search-
ing and clustering technique. The feature space is considered as
the empirical probability density function (p.d.f.) of the input fea-
tures. The algorithm proposes a filtering step that associates each
pixel in the image with the closest local mode in the density dis-
tribution of the feature space. The MS procedure actually locates
theses modes without estimating the global density. The segmen-
tation into a piecewise constant structure requires one more step,
the fusion of the regions associated with nearby modes. The im-
plementation of (Comaniciu and Meer, 2002) searches for local
modes in the joint feature and spatial domain ofn + 2 dimen-
sions, wheren is the number of considered features. An iterative
procedure of mode seeking consists in shifting the n+2 dimen-
sional window to a local mode. The search window involves two
user-defined inputs that can be deduced from desired object sizes
or physical properties. A radiometric range (hr) corresponds to
the unique spectral radius in the n-dimensions search window and
a spatial bandwidth (hs) corresponds to the spatial radius of the
window.
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Figure 1 shows the impact of both parameters on segmentation
results.

Figure 1: Mean shift segmentations of a 4-channel image
(B,G,R,NIR) using different parameters (hs, hr). Whenhr in-
creases, only highly contrasted and homogeneous regions remain:
intact young stand on the left, blue farming area, medium aged
stand on the right. Ifhs increases, only larger regions remain :
shadow areas and standing tree groups disappear within the cen-
tral, strongly damaged area.

Unlike hierarchical methods used in (Desclee et al., 2006, Conchedda
et al., 2008), the Mean Shift does not use any heterogeneity mea-
sure which is more appropriate in forestry where the objects of
interest, i.e. tree stands, include heterogeneous pixels such as
vegetation, ground and shadows. To our knowledge, the MS al-
gorithm has not been used for forestry mapping. In our method,
the Mean Shift procedure is used in both segmentation and clas-
sification steps using the joint spatio-spectral domain and solely
the spectral domain respectively (cf.Section 4).

3 AUTOMATIC FEATURE SELECTION FOR
SEGMENTATION

3.1 Feature selection using test frames

In literature, the segmentation is usually processed on all avail-
able before and after image bands. In this study, in order to de-
termine the most relevant features for segmentation, input feature
selection was carried out through an original generic calibration-
like procedure using a test frame. Moreover, this process aims
to automatically optimize the segmentation parameters. The test
frames are constructed with n small image samples correspond-
ing to n classes, yielding as much test frames as input features,
thus resulting in amulti-band test frame, at the core of our feature
selection method. The used data is not included in the validation
dataset. The test frames are then segmented by the MS algorithm
using either one input feature (single test frame) or multiple nor-
malized features (multi-band test frame) while testing various pa-
rameterizations. The feature Segmentation Performance (SP) is
defined as:

SP =
1

nc

c∑

i=1

maxj [A(Ri) ∩A(RSj
)]

A(Ri)
, Ri ∩RSj

6= ∅ (1)

where A is the area,nc the actual number of classes in the test
frame,Ri the actual regions andRSj

the segmented regions. The
segmentation performance depends on the regions overlap per-
centage. Figure 2 illustrates an example of a test frame with three
regions and the SP computation.

The highest SP value leads to the best feature or set of features.

Figure 2: (a) Actual regions, (b) Blue band test frame, (c) Seg-
mented regions using(hs, hr) = (5, 10), maximal overlaps per
region are hatched. Segmentation performance SP=86%.

3.2 Proposed input features

Forest features can be grouped into three categories: spectral, tex-
tural and temporal features. Spectral features include raw or cor-
rected spectral bands and derived bands such as the NDVI (Nor-
malized Difference Enhanced Vegetation Index) (Conchedda et
al., 2008), the PCI (Principal Components Inversion) (Inglada,
2001), etc. In this study, the four Formosat-2 spectral bands
(blue, green, red and infrared) were used as well as two vegeta-
tion indexes, the Normalized Difference and Soil Adjusted Veg-
etation Indexes (NDVI and SAVI). First order statistics such as
mean or variance of reflectance are also used. As for textural
features, the more common ones are Haralick features (Haral-
ick et al., 1973) as used in (Ruiz et al., 2004, Kayitakire et al.,
2006, St-Louis et al., 2006, Trias-Sanz et al., 2008, Tuominen
and Pekkarinen, 2005). Finally, three common temporal features
were computed: mean correlation, difference and ratio between
both images. More temporal features can be found in literature
such as the pixel-wise Magnitude of the Temporal Change Vector
(Fraser et al., 2005), the multi-temporal PCI (Inglada, 2001), the
Neighborhood Correlation Index (Im and Jensen, 2005) and will
be investigated in a future work. Temporal and textural features
were then processed for each spectral feature.

4 UNSUPERVISED OBJECT-BASED
MULTITEMPORAL CLASSIFICATION

The global unsupervised object-based multitemporal change de-
tection scheme is depicted in Figure 3. The before and after-
storm images are segmented independently using the MS algo-
rithm and the feature selection process as explained in Section
3. The before-storm segments correspond to homogeneous struc-
tural regions, i.e belonging to the same age class. The after-storm
segments reflect the change degree.

4.1 Mean Shift spectral classification

The after-storm segmented regions are represented by object mean
temporal descriptors. The automatic feature selection process
(cf. Section 3.1) provides the input features that optimize the MS
spectral classifier. The segmented regions are then clustered au-
tomatically into change classes using this optimized mean shift
spectral classifier. Unlike the MS segmentation, this modified
version is independent of pixel positions and involves solely the
spectral domain which allows to cluster similarly damaged re-
gions that are spatially distant into the same change class. The
MS classifier has a single parameter,hr, which is easy to specify.
The MS spectral classification leads automatically to many change
clusters. No reference data were available to validate the obtained
change degrees. Consequently, our objective was limited to the
production of a binary change map even if the MS spectral clas-
sification provides multiple change classes.
In order to group the change classes into intact and damaged
classes, the clusters were characterized by an innovative temporal
feature : the fragmentation rate.
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Figure 3: Multitemporal object-based change detection scheme.

4.2 Fragmentation rate

Damaged areas are heterogeneous and therefore appear over-seg-
mented in the after-storm image. Conversely, intact areas cor-
respond to larger regions and have similar delimitations in both
images. The Fragmentation Rate (FR), characterizes the before-
storm regions and reflects their over-segmentation in the after-
storm image. It is computed by a comparison between before and
corresponding after-storm regions as follows:

FR(R) = 1−
maxj [A(R) ∩A(Ra

j )]

A(R)
, R ∩R

a
j 6= ∅ (2)

where A is the area,R is the before-storm region andRa
j the

after-storm regions that are included (partly or entirely) in the

before-storm one.

The averageFR is then computed for the change clusters after-
storm. The change class fragmentation rate is then defined as :

FR(RC) =
1

N

∑

p∈RC ,p∈Ri

FR(Ri) (3)

whereRC is the change cluster,p andN are respectively the
pixels and the number of pixels of the change classC, Ri are
the before-storm regions. The clusters are finally divided into
two intact and damaged classes, based on their fragmentation rate
and using the unsupervised Otsu thresholding (Otsu, 1979) which
minimizes intra-class variances.

5 RESULTS AND DISCUSSION

5.1 Study area and data set

The Nezer forest is located on the French Atlantic coast. It is
made up of rectangular stands of pine trees that have the same
age and height. Available images of the area are a set of ortho-
rectified, geo-referenced multispectral Formosat-2 images before
and after the Klaus storm, acquired on 22/12/08 and 04/02/09,
respectively (cf. Figure 4). The images have a 8m spatial res-
olution and four spectral bands (Blue, Green, Red and Near In-
frared). Ancillary data include tree stand delimitations and ages
GIS layer and 100 reference areas identified on orthophotos of 15
cm resolution dating back to 26/02/09.

(a) Before-storm image (b) After-storm image

Figure4: Formosat-2 multispectral images acquired before and
after the Klaus storm

5.2 Feature Selection for segmentation and classification

Table 1 outlines the used input features, separated into three groups:
spectral, textural and temporal. A total of 84 features are used: 6
spectral features, 10 textural and 3 temporal features all computed
on the six spectral features respectively. For the textural features,
the neighborhood radius and the directional vector offsets were
both experimentally set to 1 pixel, the displacement vector being
horizontal.

These features were used in the feature selection process, indi-
vidually or combined in a multi-feature test frame after their nor-
malization. A test frame composed of four regions was used. The
spatial radiushs of the MS segmentation was set using a prior
thematic knowledge on the desired objects size. A 3-pixel area
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Spectral Textural Temporal
Blue Mean Difference
Green Variance Ratio
Red 8 Haralick features: Mean correlation
PIR mean, contrast,entropy
NDVI Angular Second Moment
SAVI Inverse Difference Moment

Sum average, Sum entropy
Sum variance

Table 1: Input features

can reasonably be considered as a regular forest pattern, sohs

was set to 3. To set the radiometric rangehr, all features were
individually rescaled between 0 and 255 and spectral ranges from
2 to 60 were experimented via our automated Mean-Shift param-
eter optimization procedure.

In the MS spectral classification, the smallest spectral rangehr=2
was used in order to detect subtle changes. Besides, unlike the
MS segmentation, this spectral-based clustering stage involves
only object temporal features. They derived from averaging the
temporal features over the segmented after-storm regions. Tables
2 and 3 present the best features and spectral ranges for image
segmentation and classification respectively.

After-storm segmentation Before-storm segmentation
Feature hr SP (%) Feature hr SP (%)
Red Ratio 17 87.2 Red 2 80.7
Red 3 78.1 NDVI 3 77.3
Green Ratio 16 75.5 Green 5 68.7

Table 2: Optimal features and spectral rangeshr for the after-
storm and the before-storm segmentations using a test frame of 4
samples. SP is the segmentation performance (cf. Eq. 1).

Feature SP (%)
Green Difference 92.6
NIR Difference 70.5
Red Difference 64.5

Table 3: Optimal features for the binary classification using a test
frame of 4 samples withhr = 2.

In this study, the optimal features are essentially spectral or tem-
poral. Textural features should give better results on panchro-
matic images with a spatial resolution of 2m. Indeed, the rela-
tively low spatial resolution (8m) of the Formosat-2 multispectral
images turns out insufficient to properly exploit the textural in-
formation, particularly of significance in the context of forestry.
Besides, the Haralick features were processed on small windows
(3 × 3) which may be insufficient to capture the stand texture.
Moreover, in some cases, the broken stems can be oriented in
similar directions which might lead to maxima on texture fea-
tures. Therefore, texture features should be more useful on higher
resolution and with an optimization of Haralick parameters.

For the after-storm segmentation process, the best feature is tem-
poral. Indeed, the stand structure (which depends on the tree
age) before the storm helps to determine the change degree af-
ter the storm. In addition, one can observe that the temporal fea-
tures lead to higher spectral ranges than the original image bands.
Temporal features present a Gaussian distribution, a large spec-
tral range allows to segment the image into different change de-
grees, whereas the initial image bands present a higher variability,
a finer spectral range is necessary to segment subtle changes.

Multiple feature segmentations were also tested. In our experi-
ments, the segmentation performances were better using one fea-
ture only. This rather unexpected result can be explained by two

reasons. First, the used implementation of the Mean Shift (Co-
maniciu and Meer, 2002), involves one unique spectral rangehr

for multiple features. Indeed, it was initially proposed for gray-
scale and color image segmentation. An adaptive spectral range
per feature, should enhance the results as it is more appropriate
for remote sensing images where spectral distributions of image
bands are different. Secondly, the forest canopies are very com-
plex and their variability depends on various parameters or fea-
tures that are not correlated to the damage degree. For instance,
the classical use of the eight initial bands (i.e before and after-
storm images) for the segmentation process led to a decrease in
the global classification accuracy of 5% (Orny et al., 2010).

5.3 Segmentation and fragmentation rate

Figure 5 depicts the segmentation results before and after the
storm using the respective best features. One can visually distin-
guish intact and damaged areas. Intact areas are larger and have
the same delimitations in both segmentations, whereas the dam-
aged areas are more heterogeneous leading to an over-segmentation
into many small regions.

(a) Before-storm segmentation (b) After-storm segmentation

Figure5: Segmentation of before and after-storm images using
the best features, i.e red band and red band ratio respectively.

Figure 6 shows the fragmentation rate (FR) of before-storm seg-
ments in gray levels. The lighter the regions, the more damaged

(a) Fragmentation rate (b) Tree stands age map

Figure 6: Comparison between the fragmentation rate and the
tree stand ages.

they are. This result matches visually the tree stand age map
where the older stands appear to have more damage extent than
the younger stands. In fact, among numerous factors, the tree
height influences the sensitivity of the tree to the wind. The young
stands are dense with small trees which make them more robust to
the wind. On the contrary, older stands are less dense, more het-
erogeneous due to sylvicultural practices, and present higher trees
that are more vulnerable and likely to be damaged by storms.
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Figure 7 shows the obtained change clusters using the MS spec-
tral classifier. About 30 change clusters are obtained. Given the
histogram complexity of this image, it is difficult to separate clus-
ters into two classes automatically. On the contrary, one can ob-
serve that after characterizing these regions by their average frag-
mentation rate, the damaged areas are better discriminated with
respect to the intact areas.

(a) MS spectral classification into
changeclasses.

(b) Fragmentation rate per
changeclass

Figure 7: MS spectral classification and fragmentation rate

5.4 Map validation

The figure 8 illustrates the final binary map for forest disaster de-
tection with intact and damaged areas. Reference data were col-
lected from orthophotos of 15 cm resolution, that were available
after the storm.

The table 4 shows the global confusion matrix, obtained by com-
paring pixel values between the classification results and the ref-
erence data.

Reference data
Intact Damaged Total

Intact 1390 487 1877
Damaged 80 2471 2551

Total 1470 2958 4428
Omission error 5.44 16.5

Commission error 25.9 3.14
Global accuracy 87.2

Table 4: Confusion matrix for binary classification (In-
tact/Damaged)

Overall accuracy was of 87.2%. Some small changes or intact
areas were not extracted due to the limited spatial resolution of
Formosat-2. Besides, in our method, the shadows are not taken
into account, therefore the segmentation was not robust to shadow
changes.

The INRA1 inventory data layer of theNezer site references ages
of all forest stands. It was confronted to the obtained classifica-
tion. The overall accuracy and the percentage of damaged pixels
(damaged rate) were computed for all available ages. The ob-
tained results are depicted in figure 9.

One can observe that the classification accuracy increases signifi-
cantly with the class age. The tree height influences its sensitivity
to the wind (Cucchi et al., 2005). The damage rate is higher for
the older stands and reaches 70% for stands whose age is superior
to 25 years.

The detection precision of stands aged from 14 to 39 years (four
intermediate classes) is high and ranges between 93.3 and 99.4%.

1Institut National de Recherches Agronomiques

Figure 8: Binary map of wind storm damaged areas.

However, the two youngest and the oldest stands have a lower
detection rate combined to high omission and commission errors
(cf. Table 4). The confusion happens between damaged areas
and old stands that are heterogeneous and sparse. In addition,
small damaged areas or areas with a low intensity damage (lean-
ing trees) are difficult to detect in young dense stands.

These results can be compared to the results of a similar work ob-
tained in (Schwarz et al., 2001) from 10m high resolution multi-
spectral images using a supervised object-oriented approach. Us-
ing an automatic object-based approach, our overall accuracy is
inferior (87.2%) to the one obtained by (Schwarz et al., 2001)
(96%). However, the classification accuracy obtained on trees,
aged from 14 to 39 years, is slightly better (96% versus 95%).
Good results are obtained on intermediate and older classes. Some
problems persist on younger classes as explained above. How-
ever, our method requires only a few samples to construct the test
frame and only two parameters to tune. Reducing the training and
tuning time is essential for emergency mapping.

6 CONCLUSION

We presented, in this paper, an object-based multitemporal change
detection method, well-suited for emergency mapping. Our con-
tribution provides two main novelties with respect to similar works
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Figure 9: Classification accuracy and damaged pixel rate with
respect to age classes.

in forestry. Firstly, an automatic feature selection process, ap-
plied to both the segmentation and classification steps, is intro-
duced, whose originality lies on the use of test frames (single
or multi-bands) of adequate forest samples. This innovative fea-
ture selection process, inspired by camera calibration procedures,
allows a rapid evaluation of hundreds of features and combined
features. It is applicable to the optimization of any other segmen-
tation algorithm and in the context of any application related to
forestry or not. The second originality of our approach is a rele-
vant fragmentation rate, dedicated to storm damages, that ensures
an automatic thresholding of the change clusters into a binary
map. Our method gives good results. It has the appealing prop-
erty of requiring only a few samples to construct the test frames,
leading to a slight supervision, compared to more traditional su-
pervised methods, hence categorizing it as anunsupervised ap-
proach. Moreover, our method involves only two user-defined
parameters and does not need any statistical assumption, thanks
to the powerful Mean-Shift clustering algorithm, at the core of
our change detection scheme.

However, the Formosat-2 multispectral images resolution appears
to be not well-suited to detect scattered small damages, due to
the underlying relatively low spatial resolution (8m). Indeed,
this resolution turns out insufficient to properly exploit the textu-
ral information, particularly significant in the context of forestry.
Panchromatic images, of 2m resolution, have the potential to en-
hance the current mapping performances. Finally, the confronta-
tion of the resulting binary (intact/damaged) classification to the
age class map was consistent and confirmed the increase in sen-
sitivity of the tree to the wind with the age.

Future work will be devoted to the application of our change
detection scheme to panchromatic and very high resolution im-
ages of the Nezer site. A higher spatial resolution would be
certainly more appropriate to capture textural forest details and
improve the detection of small changes. A hierarchical approach
could also enhance the detection of subtle changes in young dense
stands. In addition, in the Mean Shift algorithm, the spectral
rangehr should be adapted to each feature, to take advantage of
the spectral distribution variability and the combination of multi-
ple features.
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